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Abstract

Mobile robots need to automatically generate a safe, goal‐oriented, and fast

collision‐free trajectory in real‐time during the movement in an indoor/outdoor

environment. A planned trajectory must be adaptable and drivable with environ-

mental changes where various static and moving obstacles may be present. The

ultimate goal of a robot is to reach the destination without hitting any obstacles,

therefore, a reactive local path planning algorithm is needed. In this paper, a novel

local algorithm is proposed by integrating dynamic window approach (DWA) and

improved follow the gap method (IFGM) to generate a collision‐free trajectory for a

mobile robot which is capable to avoid any moving obstacles presenting in the

surrounding environment. In this proposed method, first, a safety distance is main-

tained according to the relative position of obstacles and the robot. Moreover, find a

feasible gap to direct the robot toward the desired goal. Besides, the heading angle is

calculated to change the direction of the robot for avoiding collision with nearby

obstacles. After that, calculate the appropriate velocity for the robot. Finally, a ro-

bust, safe, and goal‐directed trajectory is generated which does not suffer from

global convergence and local minima problems. The performance and effectiveness

of this proposed algorithm are evaluated by experimental results.

K E YWORD S
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1 | INTRODUCTION

Autonomous robots are an important part of today's world. Mobile

robots can perform many tasks on a frequent basis by using the sen-

sorial information from the surrounding environment and the goal co-

ordinates. Path planning is an inevitable issue for autonomous mobile

robots which makes collision‐free trajectories for robots to travel from

initial position to goal position without any human intervention in

various environments where both static and dynamic obstacles can be

present (Erke et al., 2020). Therefore, it draws growing attention

from researchers over the last two decades (da Costa Barros &

Nascimento, 2021; Lavalle, 2006). It depends on precisely sense static

or moving obstacles and avoid them during the movement of robots.

Real‐time obstacle detection and avoidance system deal with different

challenging situations in real environmental scenarios. There are two

types of path planning strategies depending on the static and dynamic

environments, one of them is a global path planning strategy and the

other one is a local or reactive path planning strategy (da Costa Barros

& Nascimento, 2021; Dolgov et al., 2009). The global path planning

strategy uses prior information, where a map, a goal position, and

stationary obstacles positions are known to the robot to generate a

collision‐free trajectory. This type of method is also called static path
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planning because obstacles are assumed to be static and the

given map is not updated dynamically by using the sensory

information (Chakravarthy & Ghose, 1998). Many studies have been

involved to improve the static path planning algorithms, among

them, probabilistic roadmaps (PRMs; Kavraki et al., 1996), A* algorithm

(Duchoň et al., 2014), rapidly exploring random trees (RRTs;

Lavalle, 1998), voronoi diagrams (Aurenhammer, 1991), cell decom-

position methods (Siegwart et al., 2011), and visibility graphs (Lozano‐

Pérez & Wesley, 1979) are popular collision avoidance global path

planning algorithms. These algorithms generate an accurate trajectory

for the robots when the surrounding environments and obstacles are

stationary. However, the global path planning methods take more ex-

ecution time and suffer to create an accurate trajectory when obstacles

are moving and scenarios of the surrounding environments are chan-

ging (Ozdemir & Sezer, 2017). Therefore, it is highly essential to im-

prove a realtime reactive algorithm to avoid collision with dynamic

obstacles with the changes of the environment scenarios that ensure

the safe trajectory for mobile robots. The primary objective of this

study is to generate an optimum collision‐free short and smooth tra-

jectory for autonomous robots in any dynamic environment where the

starting position and the goal position is known. Many scholars have

paid attention to developing real‐time reactive/local path planning al-

gorithms for avoiding unexpected stationery and moving obstacles. A

literature survey is presented in a paper (Patle et al., 2019) where

different classical and recent soft‐computing algorithms such as fuzzy

logic, nature‐inspired optimization algorithm, and neural network are

applied for obstacle avoidance and mobile robot navigation. In

Ahmadzadeh and Ghanavati (2012), the particle swarm optimization

(PSO) algorithm for multiple autonomous robots navigation is pre-

sented, whereas in Pandey and Parhi (2017) authors proposed a hybrid

fuzzy controller by integrating a wind drive optimization method for

mobile robots navigation and collision avoidance path planning in dif-

ferent stationary and dynamic environments. A PSO‐tuned feedfor-

ward neural network (FNN) is designed and experimented in Pandey

et al. (2020) for mobile robot navigation to minimize the path length

between the start to the goal point in various environments. Multiple

adaptive neuro‐fuzzy inference system (MANFIS) architecture‐based

mobile robot navigation is proposed by Pandey et al. (2019), where

different static and moving obstacles are present in the two‐

dimensional environments. There are other several techniques have

been proposed to create an obstacle avoidance local path for mobile

robots. Bug algorithms are the earliest version of obstacle avoidance

reactive path planning methods (Lumelsky & Stepanov, 1987). In the

bug algorithms, the robot follows the shortest path towards the goal

until it finds any obstacles in its trajectory. However, sometimes very

long and unsafe trajectory is generated by the bug algorithms (Choset

et al., 2005). Another common obstacle avoidance local path planning

algorithm is an artificial potential field (APF) algorithm (Khatib, 1985). In

the APF method, the goal position of the robot is defined by an at-

tractive potential field, whereas the obstacles are represented by arti-

ficial repulsive potential fields. The attractive potential field generates

forces to push the robot toward the goal, while the repulsive potential

generates forces of the robot to push away from the obstacles (Rostami

et al., 2019). By this way, the APF method generates trajectory for

mobile robots. However, the APF method has some drawbacks, among

them, local minima is the most dangerous problem of this method (Min

et al., 2015). Some methods try to find out the solution for the local

minima problem, but none of them can generate a proper trajectory by

solving local minima issue of the APF method (Azmi & Ito, 2020;

Lazarowska, 2019). Vector field histogram (VFH) is another important

method for generating a collision‐free trajectory (Borenstein &

Koren, 1991). In theVFH method, a histogram grid is used to show the

environment where the robot travels. However, nonholonomic

constraints are not considered in this method and sometimes it choose

the wrong sector that can drive the robot in the wrong

direction. There are some studies that have been done to improve the

performance of the VFH algorithm to generate a collision‐free

trajectory (Babinec et al., 2018; Kazem et al., 2010; Ulrich &

Borenstein, 2000). A novel follow the gap method (FGM) is proposed in

Sezer and Gokasan (2012), which is another popular safety‐focused

obstacle avoidance path planning algorithm. This method calculates the

largest gap's center angle between obstacles and determines an ap-

propriate heading angle to drive the robot toward the destination

without any collision. However, the FGM calculates only the desired

heading angle of the robot, and the velocity of the robot is considered

as a constant. Therefore, sometimes the robots fail to control motion in

narrow spaces and this is the main issue of the FGM (Demir &

Sezer, 2017). Moreover, this method sometimes generates a longer

trajectory as the robot goes through the largest gap between obstacles

(Ozdemir & Sezer, 2017). To solve this problems authors in Demir and

Sezer (2017) proposed an improved FGM which is able to generate a

shorter trajectory. Another method is proposed in Zohaib et al. (2014)

by combining intelligent bug algorithm with the FGM to solve a dead‐

end scenario of the trajectory. Dynamic‐window approach (DWA) is a

widely used obstacle avoidance path planning algorithm that de-

termines control commands for mobile robots directly from the velocity

space by maximizing of robot's objective function (Fox et al., 1997). The

objective function calculates optimum velocity pairs for mobile robots

according to a minimum distance from obstacles, final heading angle,

and speed values of robots. However, the DWA has local minima and

the global convergence problem (Berti et al., 2008; Ozdemir &

Sezer, 2017). To solve the local minima problem a global‐DWA (Brock

& Khatib, 1999) is proposed where the connectivity information of the

free space is used to determine a motion command for mobile robots. A

reduced‐DWA is proposed by Arras et al. (2002) to generate a trajec-

tory with less computational power. However, it is not able to select an

appropriate velocity command when the robot heading is far away

from the goal. To solve the global convergence problem of the DWA, a

convergent DWA is proposed in Ogren and Leonard (2005) by in-

tegrating the DWA, model predictive control (MPC) method, and

control lyapunov function (CLF) to create a trajectory for mobile robots.

This method guarantees convergence but requires more processing

time. A bionimetical DWA is proposed by Ballesteros et al. (2017),

where human and robot commands are combined to navigation for

collaborative control. An image‐based DWA is presented in Kang et al.

(2015) for dynamic obstacles avoidance by using the visual information
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of the trajectory and the environment. Authors in Ji et al. (2021) pro-

posed a method by integrating A* algorithm and the DWA by con-

sidering complex environmental information for local path planning.

There are some other methods, VFH (Borenstein & Koren, 1989), ob-

stacle restriction method (ORM; Minguez, 2005), nearness diagram

(ND; Minguez & Montano, 2000), and curvature‐velocity method

(CVM; Simmons, 1996) are used for reactive path planning.

The contribution of this paper is to develop a local path planning

algorithm for generating a shorter, safe, and drivable collision‐free path

where different moving obstacles are present in dynamic environments.

The proposed algorithm is capable to generate safe path by avoiding any

nearby unexpected dynamic obstacles. This method calculates all the

gaps among obstacles and finds the feasible gap from the IFGM, which

makes the trajectory shorter and safer for the robot. Then it determines

the final heading angle of the robot to move through the feasible gap

towards the destination. Subsequently, the DWA continuously calculates

the proper velocity while any unexpected moving obstacles are coming,

then the robot reaches the admissible velocity. Therefore, the robot can

stop before any collision with obstacles. Finally, the most important

command is calculated for the robot from the objective function. In the

objective function, the optimal trajectory is generated where the robot

can move forward and even backwards depending on the situations. The

path planning process of the proposed algorithm is shown in Figure 1.

The remainder of this paper is organized as follows: kinematic

structure of a mobile robot is described in Section 2, whereas

Section 3 broadly explains the proposed (IFGM‐DWA) algorithm

based collision‐free trajectory generation. Section 4 describes the

performance of the proposed method from different test scenarios

and verify experimental results. Section 5 concludes the paper with

possible future research directions.

2 | KINEMATIC MODEL OF A ROBOT

Kinematic structure of a wheeled mobile robot is shown in Figure 3. A

car‐like mobile robot should be considered while a robot is operated

with great velocities or masses. However, for the path planning of a

mobile robot with lower velocities or masses the kinematic structure

usually suffices (Ghita & Kloetzer, 2012; Sezer & Gokasan, 2012;

Siciliano, 2008; Tzafestas, 2014) of a car‐like robot.

2.1 | Ackerman kinematic model

Figure 2 represents the Ackerman kinematic model. The kine-

matic equations of the robot can illustrated in Equations (1), (2),

and (3) as follows:

x V θ˙ = cos( ), (1)

y V θ˙ = sin( ), (2)

θ
V

L
δ˙ = tan( ), (3)

where the cartesian coordinates (x, y) situated at the midpoint of the

wheel axis and the velocity of the robot is V. ICC represents the

instantaneous center of curveture. The robot's orientation angle and

the steering angle are represented by θ and δ, respectively.

2.2 | Differential drive kinematic model

Considering the parameters from Figure 3, where R is the radius of

the wheel, CP represents the center point, and 2L represents the

F IGURE 1 Architecture overview of the
proposed algorithm

F IGURE 2 Mobile robot's kinematic structure (Ghita & Kloetzer,
2012) [Color figure can be viewed at wileyonlinelibrary.com]
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distance between two wheel of the robot. The position of the

wheeled robot can be considered as (x y θ, ,r r r) and the robot's kine-

matic equations can be written in Equations (4), (5), and (6):

x V θ˙ = cos( ),r r r (4)

y V θ˙ = sin( ),r r r (5)

θ ω˙ = ,r r
(6)

where the cartesian coordinates (x y θ, ,r r r) shows the position on the x

axis, y axis, and orientation angle of the mobile robot, respectively.

The linear velocity of the robot is Vr , whereas the angular velocity

is ωr .

3 | IFGM‐DWA COLLISION‐FREE
TRAJECTORY GENERATION

The traditional DWA considers motion dynamics of a robot to find

an admissible velocity space under a specific time interval, after

that this algorithm using its objective function to find the most

appropriate linear and angular velocity pairs to control the motion

of mobile robots. The traditional DWA successfully guide a robot to

final position while static obstacles are present in the environment.

However, this algorithm is suffering to avoid dynamic obstacles.

Especially, the DWA is unable to avoid moving obstacles that are

coming from the front because it has local minima and forward

motion problems. On the other hand, the FGM is a geometric

obstacle avoidance algorithm which calculates the gap array to

determine the heading angle of a robot and does not consider the

rotational and translation velocity. In this paper, the DWA com-

bining with the improved FGM to avoid dynamic obstacles by

considering motion dynamics and desired heading angle of a robot.

This section describes the path planning algorithm for mobile

robots. First, the FGM is presented. Then, the traditional DWA

is described. Finally, the proposed algorithm based trajectory

generation is presented.

3.1 | Traditional FGM

The traditional FGM is the most effective geometric obstacle

avoidance technique which determines the heading angle of a robot

by considering safety coefficient. The FGM calculates the final

heading angle by using the largest gap center angle, a minimum

distance to the closest obstacle, and the goal angle of the robot as

shown in Figure 4. There are three stages in this method to find the

final guide angle of the robot. First, the radius of an obstacle is

enlarged with the radius of the robot to determine free spaces. Then,

all the gaps ahead of the robot are calculated by using obstacles

border angle values, and then the largest gap between obstacles are

determined from border angle values (Sezer & Gokasan, 2012). A gap

center angle is determined in the second stage from the robot's

heading and the largest gap midpoint. After that, the goal angle is

calculated from the goal coordinates and the heading of the robot.

In the final stage, it finds a final guide angle of the robot by using

the Equation (7):

ϕ
ϕ ϕ

=
+

+ 1
.

α

d
α

d

final

gap‐c goal
min

min

(7)

where ϕ ϕ,final gap‐c, and ϕgoal are the final heading angle, the gap

center angle, and the goal angle, respectively. dmin is the minimum

distance between robot and obstacle and α is the weight coefficient

for the gap. After calculating the final heading angle, the

mobile robot can create a safe trajectory by moving through the

largest gap.

F IGURE 3 Mobile robot's kinematic structure (Filipescu
et al., 2011) F IGURE 4 Largest gap calculation to generate a safe trajectory

for a robot [Color figure can be viewed at wileyonlinelibrary.com]
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3.2 | Traditional dynamic window approach (DWA)

The traditional DWA is searching the velocity space for commands to

control the mobile robots and this algorithm considers the robot

dynamics into account (Fox et al., 1997). The trajectories are shown

in Figure 5.

There are three steps in this method to search the velocity

space by maximizing the objective function. In the first step,

the unreachable velocities are eliminated under the dynamic

constraints of the robot which are coming from the robot's

acceleration. Moreover, the DWA considers only reachable velo-

cities that are safer regarding to the obstacles Fox et al. (1997).

The second step removes all speed pairs from the remaining ve-

locities of the robot, that are unable to stop the robot before

colliding with obstacles. In the final step, an admissible velocity

set is evaluated by maximizing the objective function. This method

predicts the trajectory of the robot by evaluating each of the

velocity pair candidates with respect to the linear velocity, the

final heading angle, and the safe distance to obstacles is presented

in Equation (8):

⋅ ⋅ ⋅G v ω σ α heading v ω β dist v ω γ vel v ω( , ) = ( ( , ) + ( , ) + ( , )),

(8)

where (α β γ, , ) are the weight constants and σ is the smoothing

operator of the DWA. In the objective function, heading (v, ω)

represents the angle between the robot heading and the goal

coordinates, whereas the aim of the dist (v, ω) provides the safe

navigation. It measures and calculates the closest distance between

the robot and the closest obstacle on the path from sampled velocity

pair (v, ω). Finally, the velocity (v, ω) calculates the highest value of

the linear velocity from the objective function for the next motion

command.

3.3 | Proposed IFGM‐DWA method

The robot and dynamic obstacles are assumed to be circular objects to

consider all physical boundaries and they have a fixed radius shown in

Figure 6. Position and radius of the robot are presented by

x y r( , , )rob rob rob , whereas nth obstacles central position and radius are gi-

ven by x y r( , , )obn obn obn . The proposed algorithm is working cooperatively

with global planner where the goal position is provided by the global

planner. The robot does not have any prior information about the tra-

jectory and the dynamic obstacles. The coordinates of moving obstacles

are continuously changing, for this reason, their position can not be

defined previously. Therefore, the robot needs to calculate the next step

in every moment by considering all the obstacles boundaries and goal

point, based on the robot's current location. The proposed IFGM‐DWA

algorithm has four stages, and these stages are described in the following

four sections. In the first section, distance calculation between robot and

dynamic obstacles is explained. Guide angle selection for the robot by

using improved FGM is described in the second section. Calculation of

the proper velocity is touched in the third section. Finally, an objective

function of the proposed algorithm is explained in details.

3.3.1 | Distance calculation between robot and
dynamic obstacles

The distance measurement between the robot and obstacles is very

important for determination the heading angle and the velocity of the

robot during the movement. A circular robot is considered as a point

robot in the cartesian space for calculating the distance between

robot and obstacle boundary and it is denoted by d and shown in

Figure 6. By considering robot and obstacles geometry the Pytha-

gorean theorem is applied to calculated (Sezer & Gokasan, 2012) as

illustrated in Equation (9):

d x x y y= ( − ) + ( − ) .obn rob
2

obn rob
2 (9)

F IGURE 5 Admissible trajectories are shown by green color,
whereas the red indicates the inadmissible trajectories. The magenda
arrow and the blue show the heading angle and the best trajectory,
respectively (Ozdemir & Sezer, 2017) [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 6 Parameters and geometry of the robot and the
obstacle to calculate the distance between them. (a) Circular robot
parameters, (b) circular obstacle parameters, (c) distance to obstacle
parameters [Color figure can be viewed at wileyonlinelibrary.com]
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The distance between the closest touching point of the circular

robot and a circular obstacle is defined by dmin and illustrated in

Equation (10):

d x x y y r r= ( − ) + ( − ) − ( + ) .min obn rob
2

obn rob
2

obn rob
2 (10)

The collision will happen if

d r r< ( + ),min rob obn (11)

the minimum distance (dmin ) is less than the summation of the

robot and obstacle radius. After subtracting the robot radius and

obstacle radius, a safe distance dsafe is calculated between

the robot and obstacles. Equation (12) illustrates the safe

distance:

( )
d

v t

v t
=

( )

2˙ ( )
,safe

max
2

max

(12)

where v t( )max is the maximum velocity and v̇ max (t) is the maximum

acceleration of the robot.

3.3.2 | Find the guide angle with the improved FGM

A guide angle of a robot is a composition of the gap angle and the

goal angle and it directs the mobile robot to the destination. The

FGM is constructing gap arrays to calculate final heading angle (ϕfinal)

for the robot and ϕfinal is derived in Equation (7). In the FGM, a robot

selects the largest gap center during the movement, thereafter the

robot suffers path length problem and it can be unstable if the size of

the gaps is similar (Demir & Sezer, 2017). A feasible gap is chosen

according to a utility function in the improved FGM and it eliminates

the FGM drawbacks. The utility function for each gap is derived in

Equation (13) which selects a new feasible gap for mobile robots.

There are two variables are acting in the utility function; the size of

gaps dn‐gap and the angle δn between goal point and gap center as

shown in Figure 7:

U m d m π δ= + ( − ),f n1 n‐gap 2 (13)

where dn‐gap and δn are the size of the gaps and the angle between

goal point, respectively. nth is the number of gap center. m1 and m2

are the weight coefficient for the size of the gaps and angle,

respectively.

The gap angle δn between the goal point and the nth number of

gap center is illustrated in Equation (14):

 δ α β= − .n n (14)

A feasible gap is calculated for the robot by considering

size of gaps as well as its heading angle to the goal coordinates

but the traditional FGM determines the largest gap only

depending on the size of the gaps. This means that the improved

FGM creates a shorter trajectory by directing the robot through

the closest feasible gap toward the goal position. Therefore,

it reduces trajectory length and guarantees a collision‐free

trajectory.

3.3.3 | Calculating the proper velocity of the robot

As described before, the DWA uses translational and rotational ac-

celerations to determine the reachable velocities from the present

velocities that can be achieved within a short time interval (t) (Berti

et al., 2008). Let the current velocity is (v ω,c c), then the reachable

velocity (Vr) is defined in Equation (15):

∈ ∈ V v ω v v v t v v t ω ω ω t ω ω t= {( , ) [ − ˙ , + ˙ ] [ − ˙ , + ˙ ].}r c c c c

(15)

The teachable velocity Vr considers only the safe velocities by

eliminating excessive velocities come from the acceleration of the

robot. It calculates an admission velocity Va (admission velocity is able

to stop the robot before the collision), when any obstacles present

near to the robot. Depending on the minimum distance between

robot and obstacles Va is generated with the velocity pairs dmin (v, ω)

and decelerations (v ω˙ , ˙b b) of the mobile robot. The admissible ve-

locity Va is shown in Equation (16):

 V v ω v d v ω v ω d v ω ω= {( , ) ≤ ( 2 ( , ) ˙ ) ≤ ( 2 ( , ) ˙ )},a b bmin min

(16)

Va ensures that the DWA precisely control velocities of the robot

during the movement.

F IGURE 7 Find the feasible gap array for the robot [Color figure
can be viewed at wileyonlinelibrary.com]
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3.3.4 | Objective function calculation for the
proposed algorithm

As the proposed method is integrating the DWA and the IFGM,

where both of the algorithms calculate the accessible velocity and the

appropriate heading angle, respectively, to guide the robot toward

the goal point. The path planning system is responsible for selecting

the control commands to improve the performance of the robot.

In this method, the robot even can move backwards when needed

and the following Equations (17), (18), and (19) are developed ac-

cording to Reeds and Shepp (1990). Therefore, the robot can turn

back in the critical moment for example two or more moving ob-

stacles coming from the front and there are no free spaces to move

forward. However, in this proposed method the robot gives the

priority to the forward motion to avoid obstacles by applying the

proper heading angle and speed of the robot. Let x(t), y(t), and θ t( )

present the robot's coordinate and the heading direction (robot's

orientation) at time t in the global coordinate system. Therefore, the

robot kinematic configuration can be expressed as (x, y, θ). The x(ti)

and the x(ti+1) describe the x‐coordinates at time ti and ti+1 of the

mobile robot. The linear and the angular velocities of the robot are

denoted by v(t) and ω t( ), respectively. The linear velocity v(t) depends

on the initial linear velocity (vi) and the linear acceleration v t˙ ( ) of the

robot. Likewise, the angular velocity ω t( ) can be defined by initial

angular velocity ω t( )i and the angular acceleration ω t˙ ( ), whereas the

heading angle θ t( ) depends on the initial orientation θ t( )i of the robot.

The operating system is shown in Figure 8.

When the robot is operating in the free spaces, the primary

factor is the velocity command that means the robot gives the

priority to the maximum linear velocity to go straight forward to

the goal position and Equations (17), (18), and (19) are illustrated the

straight forward movement of the robot toward the destination:

x t x t v t θ t dt( ) = ( ) + ( )cos ( ) ,i i+1 (17)

y t y t v t θ t dt( ) = ( ) + ( )sin ( ) ,i i+1 (18)

θ t θ( ) = .i+1 (19)

The robot changes the proper heading angle and operate on a

moderate velocity, when it finds any obstacles in its trajectory.

The heading angle and the velocity both of them are the priority

factor of the robot to overcome obstacles. In this situation, the robot

increases the heading angle and reduces the velocity as much

as needed until it avoids obstacles. Equations (20), (21), and (22)

illustrate the next movement from the current position according to

the changes of the heading angle and the velocities of the robot,

where ∫ϕ ω t dt= ( ) :

x t x t
v t

ω t
ϕ θ θ( ) = ( ) +

( )

( )
sin( + ) − sin( ),i i+1 (20)

y t y t
v t

ω t
ϕ θ θ( ) = ( ) +

( )

( )
cos( + ) − cos( ),i i+1 (21)

θ t θ ϕ( ) = + .i+1 (22)

The robot gives the priority to the safety factor when any

dynamic obstacles is near to it. A safe distance must be maintained

from nearby obstacles by increasing the maximum heading angle and

reducing the maximum velocity. In the safety first stage the next

movement actions are taken by the robot are shown in Equations

(23), (24), and (25):

x t x t( ) = ( ),i i+1 (23)

y t y t( ) = ( ),i i+1 (24)

θ t θ ϕ( ) = + .i+1 (25)

Distance calculation between the robot and the goal position is an-

other important issue while the robot has to continuously calculate

the distance and update its position until reaching the goal. Equations

(26), (27), and (28) illustrate the distance calculation between robot

and goal point, where the previous goal distance, the new goal

distance, and the forward distance are denoted by d d,previous new, and

dforward, respectively:

d x x y y= ( − ) + ( − ) ,previous rob goal
2

rob goal
2 (26)

d x x y y= ( − ) + ( − ) ,new robnew goal
2

robnew goal
2 (27)

(xrobnew and yrobnew are the robot's predicted x and y coordinates).

After calculating the robot's previous and new distance from the goal,

a forward distance can be expressed as follows:

d d d= − .forward previous new (28)

Therefore, the robot can understand how much close it has

moved to the final position. The improved FGM ensures the

safety of the robot by directing it through the feasible gap and

calculating a safe heading angle, whereas the DWA ensures

proper velocity of the robot so that it can operate at an optimal

speed except it closes to the final position. The robot operates

at maximum velocity when far away from the goal position.

However, the velocity of the robot must be reduced when it

closes to the goal position. Otherwise, the robot will pass the goal
F IGURE 8 Different operating stages depending on dynamic
obstacles distance
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coordinates (Berti et al., 2008). The optimal velocity of the robot

is determined from the objective function and it is defined by vopt

as shown in Equation (29):







v =
, when robot far away from goal ,

1 − , when robot close to the goal point .

v

v

v

v

opt
max

max

(29)

By this way, the proposed algorithm reduces the robot velocity

when goes to the goal area which is less than the given limit distance.

In this paper, the limit distance is considered 0.35m. Therefore, the

proposed algorithm prevents the global convergence problem and

never passes the goal. The main steps of the proposed method are

presented in Algorithm 1.

4 | SIMULATION RESULTS AND
DISCUSSION

To verify the performance and the effectiveness of the proposed

algorithm, it was implemented in the Python Pygame platform

to create collision avoidance local trajectory for the mobile

robot. The experimental environment is Intel (R) Core (TM)

i7‐9700T CPU @2.00 GHz, 1.99 GHz, and RAM 16.0 GB. The

parameters of the proposed method are listed in Table 1. Every

obstacle avoidance path planning algorithm has tuning different

parameters to improve the performance of a mobile robot.

Therefore, it is a very challenging issue to find a fair bench-

marking for various local path planning methods. In this paper,

the proposed method is compared with the original DWA and the

classical APF algorithm, as they are most popular local path

planning methods in robotics. The following subsection describe

test scenarios and then verify the performance of the proposed

method.

4.1 | Test scenarios

Three methods (DWA, APF, and proposed algorithm) are tested in a

series of simulations in different scenarios and the experimental results

are compared in terms of the collision rate, the average time to goal,

the average distance travel to the goal, and the average velocity of the

robot. Ten circular dynamic obstacles with random coordinate values

and movements are created in the experiments which are shown in

Figure 9. Some test scenarios are created in this paper to verify the

driving performance of a mobile robot. There are some common

conditions that robots need to satisfy for local path planning system:

• keeping a minimum distance from the dynamic obstacles,

• increasing the velocity when there is no obstacle in the trajectory,

• reducing linear velocity and increasing angular velocity while

avoiding obstacles,

• directing the robot towards the goal point, and

• stops when reaching the destination.

The aforementioned complicated conditions are few of the many

situations for local path planning that must be satisfied by the robot.

4.1.1 | Test scenario I

As can be seen from Figure 10, The original DWA fails to reach

the goal as a dynamic obstacle comes from the right front side

Figure 10a. The classical DWA considers only the forward motion of

the robot and when a robot finds any dynamic obstacle in its area, the

robot starts to reduce its speed until the admission velocity becomes

TABLE 1 Simulation parameters of the proposed method

Parameter Value

Sampling time dt = 0.1 s

Robot radius rrob = 0.15m

Maximum linear velocity vmax (t) = 0.25m/s

Maximum leaner acceleration v̇max (t) = 0.17m/s2

Maximum angular velocity ωmax (t) = 1.0 rad/s

Maximum angular acceleration ω̇max (t) = 0.6 rad/s2

Number of dynamic obstacles N = 10

Obstacle radius robs = 0.1 m

Obstacles velocity vobs = 0.05m/s

weight coefficient for gap m1 = 0.4

weight coefficient for angle m1 = 0.6

Step length 0.014m

Goal limit distance 0.35m

Steps ahead to plan 10
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zero. However, the dynamic obstacle is moving toward the robot and

thereafter, the robot colliding with the obstacle. On the other hand,

the APF and the proposed algorithm have easily overcome this

problem and reach the desired destination Figures 10b,c. In the APF

method, the goal position of the robot is defined by an attractive

potential field, whereas the obstacles are represented by artificial

repulsive potential fields. The attractive potential field generates

forces to push the robot toward the goal, while the repulsive po-

tential generates forces of the robot to push away from the ob-

stacles. By this way, the APF method generates trajectory for mobile

robots, whereas in the proposed method, when any dynamic ob-

stacles are present infront of the robot it searches a feasible gap to

avoid obstacle. If there is any feasible gap present in the trajectory

the robot moves through the gap by selecting appropriate heading

angle and parallelly reduces its velocity as much as needed to avoid

obstacles. In this proposed method, the robot has applied forward

motion to avoid any obstacles if there is at least one gap existing in

the trajectory, otherwise, it has applied backward motion when

moving obstacles coming toward the robot and there is no free space

to move forward. Therefore, this algorithm is capable to create a safe

and collision‐free trajectory by avoiding moving obstacles.

4.1.2 | Test scenario II

When obstacles present at the beginning of the trajectory as shown

in Figure 11 the robot gets stuck and can not move because the

DWA is suffering from the local minimum problem as shown in

Figure 11a. Therefore, the robot collides with the obstacle. On the

other hand, the APF avoid the collision with the obstacles but suffers

greatly while any obstacles are present near to the goal. However, in

F IGURE 9 Trajectory is shown by the black color, whereas the
red indicates 10 dynamic obstacles. The green and the lightblue
represent the mobile robot and the goal position, respectively [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 10 Scenario I: An obstacle is coming toward the robot. The traditional DWA (a) fails to reach the goal, whereas the APF (b), and the
proposed algorithm (c) generate safe trajectories without any collision [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 11 Scenario 2: Local minima problem. The DWA (a) collides with obstacle, while the APF (b) successfully reaches the goal but faces
a noticeable local minima problem while obstacles are near to the goal position. However, the proposed algorithm (c) does not suffer with this
problem and generate smooth trajectory [Color figure can be viewed at wileyonlinelibrary.com]
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the proposed method, the robot reaches the destination by avoiding

these kind of obstacles because this algorithm does not suffer by the

local minima problem Figure 11c.

4.1.3 | Test scenario III

The traditional DWA, the classical APF, and the proposed method

generate almost similar trajectories when dynamic obstacles are

coming from different sides as can be seen in Figure 12. The tradi-

tional DWA has successfully overcome any dynamic obstacles if they

come from any sides. This algorithm allows moving obstacles to go

first Figure 12a by reducing robot's speed and when moving ob-

stacles pass its safety area, then it starts to move. On the other hand,

the proposed algorithm increases the heading angle and reduces less

velocity to overcome the obstacles that is shown in Figure 12c. For

this reason, sometimes the proposed algorithm generates longer

trajectory compared to the traditional DWA but it takes less time as

the velocity is higher than the DWA. By contrast, the proposed al-

gorithm always takes less time compared to the classical APF

method. Tables 2 and 3 represent a summary of average travel time,

average distance travel, collision rates, and average velocity of the

traditional DWA algorithm, the APF method, and the proposed

method: where Table 2 considers all simulation results and Table 3

represents only the first four successful experimental results.

4.1.4 | Test scenario IV

The robot starts to follow the trajectory and when there are two

dynamic obstacles present in its path the robot must reduce its ve-

locity and increase the heading angle to make enough space to avoid

those obstacles shown in Figure 13. The APF and the proposed al-

gorithm successfully avoid these two obstacles by reducing the

maximum velocity and increasing the heading angle Figure 13c.

However, it creates a longer trajectory and takes 171.10 s for the

proposed method, while the APF takes maximum time 194.3s to

reach the destination. By contrast, the traditional DWA collides with

the obstacles as can be seen in Figure 13a.

4.1.5 | Test scenario V: The velocity of the dynamic
obstacles is 0.10m/s

The test has been further extended to include the effect of increasing

the obstacle velocity to 0.10m/s (from 0.05m/s). Figure 14 shows

F IGURE 12 Scenario 3: Successful trajectories generated by all three methods: (a) represents the trajectory which is generated by the DWA,
whereas (b) and (c) present the APF and the proposed method trajectories, respectively [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 The experimental results
comparison among the DWA, the APF,
and the proposed method

Average distance
travel (m)

Average time
taken (s)

Average velocity
(m/s) Collision rates

Original DWA 8.59 45.52 0.19 33.33

Classical APF 9.08 77.47 0.12 0.00

Proposed
method

9.05 64.31 0.14 0.00

TABLE 3 First four simulations are
considered and compared, where all the
methods (the DWA, the APF, and the
proposed algorithm) successfully generate
trajectories for the robot by avoiding
collision

Average distance
travel (m)

Average time
taken (s)

Average velocity
(m/s) Collision rates

Original DWA 8.60 46.28 0.19 0.00

Classical APF 9.02 50.78 0.185 0.00

Proposed
method

8.98 44.05 0.20 0.00
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the trajectories where the speed of the moving obstacles is 0.10m/s,

whereas, Figure 13 shows the paths when the dynamic obstacles

velocities are 0.05m/s.

In Figures 13a and 14a, it can be noticed that there is not much

difference in the trajectories with higher and lower velocities. From

Figures 13b,c and 14b,c it can be seen that the effect of increased

obstacle velocity is the generation of shorter and straighter trajectories.

The moving obstacles with higher velocity in Figure 14 pass the robot's

safe area faster compared to the lower velocity of the obstacles in

Figure 13 and the robot makes quicker decision to avoid collisions.

Consequently, the robot takes less time and travels less distance to reach

the set destination. Therefore, depending on the velocity of the obstacles

the local path planning methods generate different trajectories.

4.2 | Drivability verification of the proposed
method

Figure 15 shows the variations of the linear and angular velocities of

the DWA, the APF, and the proposed method throughout the si-

mulations. Drivability verification of two methods are compared on

the basis of average velocity in Tables 2 and 3.

As can be seen fromTable 2, the proposed method average velocity

is about one quarter lower than the original DWA. From Figures 10, 11,

and 13 the reason can be easily explained why the proposed approach

velocity is lower. These experiments show that the traditional DWA failed

to reach the goal, while the proposed method reached the destination but

the robot was maintaining the lower velocities to avoid dynamic

F IGURE 13 Scenario 4: The speed of the dynamic obstacles are 0.05m/s and two dynamic obstacles present in the trajectory. (a), (b), and (c)
present the DWA, the APF, and the proposed method trajectories, respectively [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 14 Scenario 5: The speed of the dynamic obstacles are 0.10m/s and two obstacles present infront of the robot. (a), (b), and (c)
present the DWA, the APF, and the proposed method trajectories, respectively [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 15 (a) and (b) represents the linear and angular velocity of the DWA and the APF method, respectively, where (c) shows the
proposed method's linear and angular velocity throughout the experiments [Color figure can be viewed at wileyonlinelibrary.com]
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obstacles. However, fromTable 3 (where two methods have successfully

reached the destination) it can be noticed that the proposed approach

average velocity (0.20m/s) is higher than the average velocity (0.19m/s)

of the DWA. Therefore, the proposed local path planning algorithm is

properly maintaining the translational and rotational velocity of the robot

during the movement. On the other hand, the average velocity of the

proposed method is higher compared to the average velocity (0.12m/s)

of the APF method as the APF has a local minima problem, therefore, it

reduces its maximum speed while obstacles are present near to the goal.

4.3 | Safety verification of the proposed algorithm

The most significant contribution of this paper is the improvement of the

successful trajectory generation without any collision. Safety rate of the

proposed algorithm is verified by comparing the collision rate between

the proposed method, the APF, and the DWA. The speed of the dynamic

obstacles are set to be 0.05 (m/s) and nine simulations have experi-

mented for safety verification. Comparison of the collision rates is shown

in Table 2. From Table 2, it can be seen that the APF and the proposed

algorithm generates 0.0% collision rate that means these methods 100%

successful to generate collision‐free trajectories without any collision. By

contrast, the original DWA collision rate is 33.33% means among nine

times simulation the robot has failed three times to reach the destination.

Therefore, the proposed method and the APF method generate much

safer trajectory compared to the existing DWA.

4.4 | Distance and time verification

It can be noticed in Table 2, the proposed method generates about 5%

longer trajectories than the traditional DWA. Moreover, this algorithm

takes more average time than the DWA to reach the goal. The successful

number of simulations and arrival times are shown in Figure 16. The

traditional DWA takes average 45.52 s, while the average time to the goal

of the proposed algorithm is 64.31 s. This means the proposed approach

takes around 29% more average time compared to the DWA and travels

longer distance. As we mentioned before, in some cases the DWA failed

to avoid the dynamic obstacles, where the proposed method took more

time and traveled longer distance to successfully generate safe trajec-

tories by avoiding moving obstacles. However, the average travel dis-

tance of the APF and the Proposed method are almost similar but the

APF takes more time than the proposed method to reach the goal.

According to Table 3, the Proposed method shows better average

arrival time (44.05 s) than the average arrival time of the DWA (46.28 s)

and the APF (50.78 s). However, in the proposed algorithm the robot

travels longer average distance compared to the original DWA method

and shorter average distance compared to the APF. The proposed

method does not always guarantee to create the shortest trajectory, but it

ensures safe and fast trajectory for the mobile robot.

5 | EXPERIMENTAL RESULTS AND
DISCUSSION

The experimental results of the TurtleBot robot in different dynamic

environments are presented in this section. The path planning of the

TurtleBot robot has been performed through robot operating system

(ROS) platform. It is a two‐wheeled differential drive robot, as shown in

Figure 17. There are two separate DC motors in this robot which are

controlling the orientation and motion of theTurtleBot. It also has a caster

wheel, which is used to support the chassis of the robot. The dimensions

F IGURE 16 Comparison the successful number of simulations and time to reach the goal. The DWA (a) shows that it reaches destination six
times among nine times simulations, whereas the APF (b) and the Proposed method (c) successfully achieve the goal nine times [Color figure can
be viewed at wileyonlinelibrary.com]

F IGURE 17 TurtleBot two‐wheeled differential drive robot
[Color figure can be viewed at wileyonlinelibrary.com]

12 | HOSSAIN ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


of the TurtleBot are 42.5 cm (length), 42.5 (width), and 16.8 cm (height),

respectively. It is equipped with a ZED stereo camera and eight ultrasonic

sensors. The ZED Stereo camera is a 3D sensor which is used for long‐

range depth perception and motion tracking of the robot. Ultrasonic

sensors are used to measure the obstacles distance from 2.5 cm to 4.3m

approximately. The proposed method has been designed in Python, and

this method controls the steering angle and the speed of the TurtleBot

through ROS function. The ROS establish a connection between Python

software and TurtleBot robot. The real‐time sensor data, traveling time,

traveling distance, and the positions (x‐axis and y‐axis) of the TurtleBot

cab be extracted from the ROS function. The real‐time path planning and

motion control performance of the proposed method is shown in

Figures 18, 19, and 20. Figures 18, and 19, present the 3D and 2D view

of the experiment result of theTurtleBot by applying proposed algorithm,

where five dynamic obstacles are present in the environment. Similarly,

Figure 20 shows the 3D trajectory of theTurtleBot in experiment two to

reach the target, where seven moving obstacles are present in the dy-

namic environment.

It can be observed from Figures 18, 19, and 20 that the

proposed method‐based TurtleBot has generated a smooth, short, and

collision free path to reach the goal. In these experiments, the begin-

ning position and the goal position of the TurtleBot has been pre-

defined, while the position of dynamic obstacles are unknown to the

robot. The distance of the obstacles received from sensors of the

TurtleBot which are the inputs. The outputs are the steering angle and

the speed of the differential drive robot. A threshold limit distance is set

60 cm between the TurtleBot and the obstacles to avoid collision in

different environments. When the TurtleBot detects any obstacles

within this threshold distance range, the proposed method will control

the speed and steering angle of the robot to avoid collision. If there is

no obstacles present within the threshold distance range of the robot,

then it moves ahead for reaching the destination point. In this proposed

method the robot is not bound to track a given route. The robot looks

at its industrial environment and can redefine the shortest and best

trajectory to reach the destination while moving obstacles are ap-

pearing in its trajectory. Successful experimental results show that the

proposed method based robot is able to generate a robust, safe, and

goal‐directed trajectory in the dynamic environment by avoiding static

and moving obstacles.

6 | POTENTIAL REAL‐TIME APPLICATION
OF THE PROPOSED METHOD

The proposed method is very promising for industrial environments

and allows the robot to work collaboratively with moving workers

and people. It is suitable for autonomous picking, packing, and pel-

letizing, warehouse applications where the robot needs to

F IGURE 18 Experiment one result: 3D
trajectory generation of the TurtleBot [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 19 Two‐dimensional navigation
result for the experiment one of the TurtleBot
between five moving obstacles in the
environment [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 20 Experiment two: 3D trajectory is generated by
applying the proposed method on the TurtleBot [Color figure can be
viewed at wileyonlinelibrary.com]
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subassemblies products from one place to another place. It can cal-

culate the most appropriate route for material transport by navigating

safely around dynamic obstacles. The proposed path planning algo-

rithm is also applicable for service robots such as restaurant food

delivery robots for delivering food to customers from the counter

with precision and efficiency. It can stop, take a turn, or even reverse

direction of the mobile robot for choosing another trajectory when

moving obstacles such as customers are present in its path. The robot

can also safely avoid moving obstacles and keep on traveling by using

the information from the environment. The autonomous robot can

collide with customers that can cause harm if the path planning al-

gorithm is not properly working. The proposed algorithm is capable to

create a path around dynamic obstacles and reach the desired des-

tination to serve food to customers without any collision.

The proposed method also could be a potential solution for

family farming robots, for example, autonomous lawn mowers,

ground robots for crop surveillance in tree‐crop applications, auton-

omous weeding robot, where different moving obstacles including

children, pets, and other animals can be present in the dynamic

environment. This proposed method can facilitate a mobile robot to

stop, back up, turn, and moves away from anything that it may

unexpectedly encounter within the surrounding environment.

7 | CONCLUSION

In the dynamic environment, it is very challenging for mobile robots

to automatically generate safe, robust, and goal‐oriented collision‐

free trajectory in real‐time. In this paper, a real‐time reactive local

path planning algorithm is proposed to generate a collision‐free tra-

jectory with respect to the different threat levels of the dynamic

obstacles. There are different test scenarios are created where

moving obstacles are coming from different coordinates and the

proposed algorithm can prevent the collision of the robot from the

nearby unexpected dynamic obstacles. It contributes to the following

innovation points:

• The robot always maintains a safe distance from any closest

moving obstacles and search the gap to avoid a collision.

When the robot finds at least one gap, it can easily avoid the

obstacle by moving through this gap which ensures the safe

trajectory.

• The heading angle and the admissible velocity are parallelly working

to improve the robustness and the stability of the mobile robot.

They are applied depending on the relative position of the robot and

moving obstacles. The heading angle is increasing to change the

direction of the mobile robot. The velocity of the robot changes

according to the threat levels of the dynamic obstacles. The threat

level differs according to position and speed between the robot and

obstacles. Higher threat level means moving obstacles are close to

the robot, in this situation, the robot reduces the maximum speed

and increases heading angle to avoid obstacles.

• The proposed algorithm does not suffer from the local minima

problem, while the other local path planning methods seriously

suffer from this problem.

• The proposed method takes less time to reach the goal, as it

moves with the higher velocity compared to the existing DWA, but

sometimes generate longer trajectory than the traditional DWA.

From the experiments, it can be shown that the proposed algorithm is

capable to create safe, fast, and more goal‐oriented collision‐avoidance

trajectory in different test scenarios with the moving obstacles. The

experimental results show that the proposed algorithm outperforms the

traditional DWA on the basis of the safety and the drivability to generate

a collision‐free trajectory. The proposed local path planning algorithm is

applicable to the ground mobile robots with a lower velocity.

The future work will further develop the collision‐free local path

planning algorithm with the higher velocity of the robot. The noise

and uncertainties of the robot will be considered precisely to create a

more extensive, fast, and safe path planning algorithm.
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